2 марта 2017
В закладки
Обсудить
Задача 19
Две окружности \(\Omega \) и \(\omega \) радиусов R=12,5 и r=4 касаются внутренним образом. Хорда AB окружности \(\Omega \) касается окружности \(\omega \) в точке C. Найдите длину хорды АВ, если известно, что AC:BC=1:2.
Решение
На рисунке точка Q – центр окружности \(\omega \) (меньшего радиуса), точка O – центр окружности \(\Omega \) (большего радиуса).
\(QO = R - r = 8,5\)
Пусть \(AC = 2x\), \(BC = 4x\), тогда \(AB = AC + BC = 6x\). AB является хордой большей окружности с центром в точке O, поэтому перпендикуляр OH делит хорду пополам, откуда \(AH = HB = 3x\).
Получаем \(CH = AH - AC = x\). По теореме Пифагора для треугольника OHA имеем
\(OH = \sqrt {{{\left( {OA} \right)}^2} - {{\left( {AH} \right)}^2}} = \sqrt {{{\left( {12,5} \right)}^2} - 9{x^2}} .\)
Пусть OF – перпендикуляр на QC. Тогда OFCH – прямоугольник и
\(OF = CH = x\)
\(QF = QC + FC = QC + OH = 4 + \sqrt {{{\left( {12,5} \right)}^2} - 9{x^2}} \)
Из прямоугольного треугольника OQF:
\({\left( {QO} \right)^2} = {\left( {QF} \right)^2} + {\left( {FO} \right)^2},\)
\({\left( {8,5} \right)^2} = {\left( {4 + \sqrt {{{\left( {12,5} \right)}^2} - 9{x^2}} } \right)^2} + {x^2}.\)
\(8{x^2} - 100 = 8\sqrt {156,25 - 9{x^2}} ,\;\;x = 4.\)
\(AB = 6x = 24.\)
Ответ: 24.
Решение

На рисунке точка Q – центр окружности \(\omega \) (меньшего радиуса), точка O – центр окружности \(\Omega \) (большего радиуса).
\(QO = R - r = 8,5\)
Пусть \(AC = 2x\), \(BC = 4x\), тогда \(AB = AC + BC = 6x\). AB является хордой большей окружности с центром в точке O, поэтому перпендикуляр OH делит хорду пополам, откуда \(AH = HB = 3x\).
Получаем \(CH = AH - AC = x\). По теореме Пифагора для треугольника OHA имеем
\(OH = \sqrt {{{\left( {OA} \right)}^2} - {{\left( {AH} \right)}^2}} = \sqrt {{{\left( {12,5} \right)}^2} - 9{x^2}} .\)
Пусть OF – перпендикуляр на QC. Тогда OFCH – прямоугольник и
\(OF = CH = x\)
\(QF = QC + FC = QC + OH = 4 + \sqrt {{{\left( {12,5} \right)}^2} - 9{x^2}} \)
Из прямоугольного треугольника OQF:
\({\left( {QO} \right)^2} = {\left( {QF} \right)^2} + {\left( {FO} \right)^2},\)
\({\left( {8,5} \right)^2} = {\left( {4 + \sqrt {{{\left( {12,5} \right)}^2} - 9{x^2}} } \right)^2} + {x^2}.\)
\(8{x^2} - 100 = 8\sqrt {156,25 - 9{x^2}} ,\;\;x = 4.\)
\(AB = 6x = 24.\)
Ответ: 24.