Пробники ЕГЭ
Математика, Физика, Информатика, Химия, Русский, Обществознание, Литература, История, Иностранные языки, География, Биология
0
4 апреля 2023
В закладки
Обсудить
Жалоба

Практика по планиметрическим задачам (№16)

Пробные работы ЕГЭ по математике
Презентация на урок.

pl16.pptx
pl16.pdf




Точки 𝑀 и 𝑁 – середины сторон соответственно 𝐴𝐵 и 𝐶𝐷 параллелограмма 𝐴𝐵𝐶𝐷 .
а) Докажите, что прямые 𝐷𝑀 и 𝐵𝑁 делят диагональ 𝐴𝐶 на три равные части.
б) Найдите площадь четырёхугольника, образованного пересечениями прямых 𝐵𝐷, 𝐵𝑁,𝐴𝐶 и 𝐶𝐷, если площадь параллелограмма 𝐴𝐵𝐶𝐷 равна 36.

В треугольник 𝐾𝐿𝑀 помещены две касающиеся окружности с центрами 𝑂_1и 𝑂_2 , причем первая из них касается сторон 𝐾𝑀 и 𝐾𝐿, а вторая 𝐾𝑀 и 𝐿𝑀.
а)Докажите, что прямые 𝐾𝑂_1 и 𝑀𝑂_2 пересекаются в центре окружности, вписанной в Δ𝐾𝑀𝐿.
б) Найдите радиусы окружностей, с центрами в точках 𝑂_1и 𝑂_2 , если известно, что они равны , а 𝐾𝑀 =𝐾𝐿=5, 𝐿𝑀=8.

В треугольнике 𝐾𝑀𝐿 проведена биссектриса 𝐿𝑇, которая делит сторону 𝐾𝑀 в отношении 4:9 считая от точки 𝐾. 𝐾𝐸 и 𝑇𝐹 – параллельные прямые , которые пересекают отрезок 𝑀𝐿 в точках 𝐸 и 𝐹 соответственно. Известно, что 𝑀𝐹:𝐸𝐿=27:15.
а) Докажите, что 𝐾𝐿:𝐿𝐸=24:15.
б) Пусть 𝐴- точка пересечения𝐾𝐸 и 𝐿𝑇. Найдите 𝑆_𝐹𝐸𝐾𝑇, если 𝑆_Δ𝐿𝐾𝐴=15.
Автор: Черноволова Е.В.
    • smileblushsmirkconfusedhushedpensivecry
      angrysunglasses