Задача 28 → №18 профильного ЕГЭ

Найти все значения параметра а, при которых неравенство

\(\cos x - 2\sqrt {{x^2} + 9} \le - \frac{{{x^2} + 9}}{{a + \cos x}} - a\)

имеет единственное решение.


Решение

Преобразовав, запишем неравенство в виде

\(\frac{{{{\left| {\left( {a + \cos x} \right) - \sqrt {{x^2} + 9} } \right|}^2}}}{{a + \cos x}} \le 0\)

Его решениями будут решения уравнения \(a + \cos x = \sqrt {{x^2} + 9} \) и неравенства \(a + \cos x < 0\). Неравенство не может иметь единственного решения ни при каком значении а. Следовательно, чтобы выполнялось условие задачи, необходимо, чтобы неравенство \(a + \cos x < 0\) не имело решений, а это будет выполнено, если \(a \ge 1\).

Теперь необходимо, чтобы уравнение \(a + \cos x = \sqrt {{x^2} + 9} \) имело ровно одно решение. Заметим, что если \({x_0}\) – решение уравнение, то и \( - {x_0}\) является решением. Стало быть, для того чтобы решение было единственно, необходимо, чтобы \(x = 0\) было решением. А это выполнено при \(a = 2\). Тогда уравнение выглядит так: \(2 + \cos x = \sqrt {{x^2} + 9} \). Его левая часть не превосходит числа 3, а правая – не меньше 3. Следовательно, \(x = 0\) – единственное решение уравнения. Вспоминая, что при \(a = 2\) неравенство \(a + \cos x < 0\) не имеет решений, получаем ответ.

Ответ: 2.



Источник задачи: сборник задач под ред. Куланина.
Просмотров: 866 | 11 марта 2017
Математика ← Устный счёт
К 185 гр воды добавили 15 гр серной кислоты. Тогда процентное содержание раствора стало:



Математика ← Тренировка



До ЕГЭ 2018 осталось | Заставка

Если нашли ошибку в тексте, выделите
её и нажмите Ctrl+Enter.
© 2008-2017. «4ЕГЭ»