8 ресурсов для подготовки к олимпиадам по математике от победителей

Своими фаворитами для подготовки к соревнованиям делятся математики: Георгий Вепрев, призер Международной математической олимпиады, и Михаил Иванов, победитель Международной математической олимпиады.


Георгий Вепрев

Книги


Агаханов Н. Х., Богданов И. И., Кожевников П. А., Подлипский О. К., Терешин Д. А. Всероссийская олимпиада школьников по математике 1993-2009. Сборник задач Всероссийской олимпиады (муниципального и заключительного туров) по математике с решениями.

Кохась К. П., Берлов С. Л., Власова Н.Ю., Петров Ф. В., Солынин А. А., Храбров А. И. Задачи Санкт-Петербургской олимпиады школьников. Каждый год выходит новая книга с задачами, решениями и статьями по олимпиадной математике.

Акопян А. В. Геометрия в картинках. Прекрасная книга для любителей геометрии. В ней собрано огромное количество задач, от совсем простых до очень сложных. Условие задачи представлено в виде картинки, так что можно решать и без бумажки.

Прасолов В. В. Задачи по планиметрии. Сборник задач по планиметрии. Геометрия на любой вкус, размер, и цвет.


Интернет-ресурсы

Art of Problem Solving. Здесь можно найти задачи со всего мира, поучаствовать в обсуждении, найти красивые решения.
Problems.ru. Огромный архив задач по всем темам на русском языке с решениями.


Михаил Иванов

Книги


Боревич З. И. Определители и матрицы. Хорошее пособие для тех, кто хочет познакомиться с началами линейной алгебры. Плюсом книги является правильная последовательность повествования: прежде чем ввести очередное понятие, автор мотивирует новое определение поучительными примерами.

Мельников О. И. Теория графов в занимательных задачах.
С помощью этой книги можно значительно повысить навыки в сфере комбинаторных задач. Для каждой задачи указана сложность, а также приводится подробное решение. Эта книга помогла мне продвинуться в теории графов: как познакомится с парой новых комбинаторных приемов, так и попрактиковаться в решении непростых задач.

По моему мнению, олимпиады по математике отличаются от соревнований по другим предметам тем, что для подготовки к ним может быть достаточно очень активного участия в работе математического кружка. Необходимым условием успеха является регулярное решение задач (по геометрии, алгебре, теории чисел, комбинаторике; как простых, так и трудных), без которого простое чтение каких бы то ни было книг становится гораздо менее осмысленным.


Источник: olimpiada.ru
Просмотров: 3451 | 29 января 2018
Математика ← Устный счёт
Найдите корни уравнения:



Русский язык ← Задание 18
В каком варианте ответа правильно указаны все цифры, на месте которых в предложении должны стоять запятые? В глубоком молчании сидели мы с братом на заборе под тенью густого серебристого тополя и держали в руках удочки (1) ржавые крючки (2) которых (3) были опущены (4) в огромную бадью с загнившей водой.



До ЕГЭ 2019 осталось | Заставка

Если нашли ошибку в тексте, выделите
её и нажмите Ctrl+Enter.
© 2008-2018. «4ЕГЭ»